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Abstract—Understanding the modalities of interaction of nentofthe model up to the neuronal network level. In this paper,
electromagnetic (EM) fields with biological material is a key point  the authors investigate the possible effects of EM signals re-
in the identification of possible induced effects. An integrated lated to universal mobile telecommunication system (UMTS)

approach to model EM fields interaction with biological systems : S
is proposed in this paper. Here, a neuronal network is identified as and global system for mobile communication (GSM) standard

the biological target. In this paper, for the first time, the possible 0N the setup model.
effects of EM signals related to universal mobile telecommunica-  In the next two years, the new mobile telecommunication

tion system and global s_ystem_for mobile communication standard standard UMTS is going to establish itself as the third-genera-
on the setup model are investigated. tion technology, and services based on this standard will coexist
Index Terms—Bioelectromagnetic interaction, microwaves with the current use of GSM second-generation technology.

(MWs), mobile phones, modeling, neuronal network. These standards greatly differ in frequencies and patterns used
[time-division multiple access (TDMA) versus code-division
I. INTRODUCTION multiple access (CDMA)], therefore, it seems interesting

to evaluate how RF fields associated with such wireless

T HE study of possible electromagnetic (EM) field effectg, no10gy can interact with biological systems and how the

_on biological systems can be rigorously faced by giterences in the signal physical layer could eventually modify
preliminary investigation on biophysical mechanistic basis ?)fh

X ) _ : Iysiological conditions.
the interaction between the fields themselves and the biologica
structures involved. Since the beginnings of bioelectromagnetic
studies, cellular membrane has been addressed as a primary site
of interaction, leading to different models in literature. In partic®. Neuronal Network Model

ular, authors have chosen to perform analysis of this biologicalA quasi-realistic neural network has been used in order to
system as the only effective way to understand interactiopestigate possible modifications in the electrical responses
with EM fields, in order to explain effects at cellular and tissugnder EM exposure. We mainly consider the pattern of action
level [1], [2]. This approach is quite in accordance with a basjotentials and back-propagating action potentials, in particular,
observation: the biophysical and biochemical physiologicaiter-spike intervals (ISls), spike coincidence, and synchroniza-
equilibriums are managed at cell and cell-membrane levgbn of firing neurons, as macroscopic observables of possible
However, the cell membrane is not the basic biological unit fefetabolic changes within the neuron.
a bio-system, in fact, some other elementary structures existrhe task of connecting neuronal models has been resolved in
with defined tasks and functional modalities. This leads to tlrg], approaching the problem of signal propagation inside the
determination of a biological scale of complexity that growgxon on the basis of the core-conductor model [3]. The axon
from the low biophysical level of ion-transport across celength can vary in arange between 1-100 mm. The overall effect
membrane to the biological one of cellular cycles or signalingf the neuronal axon can be taken into account by considering
pathways. The structures and processes at each level of gisre-axon transmembrane voltag.. and a post-axon one
scale, due to their electrical or polar nature, are identified 5., linked by the following relationship:
intrinsically sensitive to EM fields.
Apollonio et al.recently proposed an integrated approach to Voot = Vire 0Xp <—_~L> Q)
model EM fields interaction with biological systems [2]. This post = Tpre
methodology |mplemgnts the biological scqle of complexity anvgherez is the axon length, andlis determined referring to the
evaluates the effects induced by the EM field on each compo- . ° : ; . .
resistive and dielectric characteristics of the axon. More specifi-
cally, referring to Fig. 1(a), itis possible to approximate the axon
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Fig. 2. State machine model for sodium voltage-dependent channel. Model
topology: eight states, two different kinetics, transition rates.

(b)

the different states and the matr elements are reported
Fig. 1. Interconnection of neuronal models. (a) Network connection of twé Fig. 2 for sodium, a voltage-dependent ionic channel used
neurons. (b) Stochastic neuron model. in the following. The channel is composed of four molecular

subunits, whose structural conformations are responsible for

for the insulation of the cytoplasm from the external enviror£h@nnel opening or closing. As a consequence, the model has
ment, as well as several ionic channels, i.e., macromolecufi@ht states with only one consideredpen” which means
structures through which ions can pass from the extracellug@nductive. Three subunits follow an-like kinetics regulating
medium to the intracellular and vice versa. The electrical intdft/Ctuations between opefO) and closed(C) states, while

pretation of the model gives rise to a lumped-element circuit f@R€ Subunit follow ari-like kinetics for the inactivating /)
the neuron (theleterministic neuropin which the double layer Process. The transition rates depend on membrane voltage

is represented by means of a capacitance, and ionic channelshOn temperature. _ _

be simulated by means of nonlinear resistances (ions movindn order to evaluate the time course of channel gating, the
through the membrane) and fixed potentials (different ion coflannel is commonly supposed to be a zeroth-order Markov
centration inside and outside the cell) [4]. Results obtained wiRain, stationary and ergodic, and the channel activity is rep-
the lumped model give a good matching with experimental ddi@sented by a random process where the aleatory variable is the
[5]. Connecting several lumped-element models gives rise to (i@ell time in a certain state [10]. Under such hypotheses, it is
deterministic neuronal networR he response of theetermin- POSSible to quantify the current flowing through the channel, as
istic neuronal networko extremely low frequency (ELF) EM gfu_ncuon of the tme, by the evaluation of the probability of
fields has been investigated in [2] using the lumped-element dif2ding the system in the open state [10]-[12]. The model has
cuit able to simulate the behavior of silent and firing neuron&f€n implemented and solved by means of a Monte Carlo tech-
membranes. Nevertheless, such a model is not properly usdBfé/€; following the procedure summarized below:

at RF frequencies due to the presence of the short-circuiting ca-1) single process simulation

pacitance of the membrane. « identification of the current state of the channel;

In order to overcome this limit, a different way to model + evaluation of the dwell-tim¢T; ) in the current state

ionic channels has been introduced based on a Markov model by stochastic technique [10]; _
approach [6]-[8]. The channel's behavior is fully defined by + evaluation of the state that will be occupied after a
a set of N states, a transition rate mat, whose elements time (74);

¢;; are the transition rates regulating the kinetic of the process,2) Statistical averaging _ _

and a vectorP(0), whose N elements are the occupancies + realization of N single-process simulation;

for each state at the starting time= 0. Each state in the + evaluation of the open probability temporal evolu-
model represents a possible conformation for the channel (open tion.

or closed), and transitions among states represent struct@ake the dwell time in a certain stdtg;) has been determined
modifications associated to energetic changes. If the chanasla function of transmembrane voltage and temperature, itis as-
is considered ohmic (experimentations confirm this hypothesiamed that the channel is insensitive to an external stimulation
with reasonable approximation [9]), the current flux througfor a timeTy, after which, returning to be sensitive, is ready for
the channel at any instant is proportional to the probabilithe evaluation of the next state. For this reason, providing that
for the system of being in an open state. A scheme reportiag appropriate time step is used in the numerical algorithm, the
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ISI AND Vi OF THE STOCHASTIC NEURON FORDIFFERENT NUMBER OF

40 REALIZATIONS
20 1 ~ISI . N=1024____|N=2048
ob = . ISI (ms) Mean 438 439.25

P V. Dev std 21.4 11.47
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Fig. 3. Membrane voltage behavior. The parameters observed are ISls,

the distance between two subsequent spikes, é@ndnembrane threshold,
membrane value at which the spike starts.
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Fig. 5. Example of UMTS and GSM signals used for simulations7{a)s
0.546 ms (carrier on) andl; is 4.6 ms. (b)I'; is 0.66 ms, in each timesld@f;
power varies randomly of 1 dB and frequency varies of 5 MHz over 1940 MHz.

neuror) is composed by cascading protein channel models, as
sketched in Fig. 1(b), and can respond to RF fields like mobile
telecommunication signals.

In this paper, the contribution of activated synapses to
link several stochastic neurons has been taken into account,
following the core-conductor approach previously introduced.
The final result is a tissue network: tletochastic neuronal
network The more the ionic currents simulated with Markov
models are similar to the currents generated in the deterministic
model, the more the entire neuronal network works fine, thus
giving realistic data. To this regard, a crucial point is played
by the statistical averaging process of the ionic current Monte
Carlo solution, in particular, the number of realizatiagv) of a

Fig. 4. lonic currents calculated via Markov models with a different number &ngle gating process. Fig. 4 reports on the sodium and calcium

realizationsV. (a) Sodium currentwitflv = 1024 andN = 2048 realizations.
(b) Calcium current withV = 1024 and N = 2048 realizations.

currents simulated in the stochastic neuron through Markov
models with different values olV. It is possible to observe

that increasingV from 1024 to 2048 realizations determines

channel can be investigated even with high-frequency comm+eduction of “noise” in the current waveforms, particularly
nents. This explains how EM exposure even in the microwaf@ the sodium current and, hence, a better approximation of

(MW) range can be considered.

the analytical curve. The resulting statistical parameters (mean

lonic channels simulated through stochastic state machinedue and standard deviation) of the 1SI and threshold voltage
have been introduced in the circuital model for a single neuronane reported in Table | for botV’ = 1024 and N = 2048
[2]. Fig. 3 reports on the behavior of membrane voltage in phyealizations. The value oV = 2048 has been chosen for this
iological conditions. The integrated model obtainstb¢hastic study. In order to assess the connection, three neurons have
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TABLE 1l
OUTPUT VARIABLES FOR THE DIFFERENT MODELS
ISI Ve
Mean |Stand. | % effect | % effect Mean |Stand. | % effect | % effect
Dev. on mean |on stand. dev Dev. on mean |on stand. dev
Unexposed |439.2 |11.47 |- - -49.06 | 1.5 - -
SIN900 439.5 |11.15 ]0.07 -2.7 -4941 |1.7 0.7 13
GSM 4382 |11.28 |-0.2 - 1.6 -48.86 | 1.4 -04 -6
UMTS 439.7 110.79 0.1 -6 -49.18 | 1.6 0.2 6

been considered and placed at a distance of 1 mm. Interestcattulated with Markov models. The T-Student test gives
stochastic models of nervous structures increased recently [&8]a result the-value; if p is large(p > 0.5), there is no
and a complete simulation of the involved channels seemsegidence of a difference comparing the two different groups. In
be crucial [13], [14]. Such results [13] open the possibility gbarticular, considering as an example the potassium channel,
applying our approach to other kinds of nervous tissues. the physiological and exposed situation have been compared
Once defined, the physiological situation of a neuronal tisséer different values of induced membrane potential. Extremely
with its own pattern of receptors and signaling transduction sysignificant values ofp < 0.0001 have been obtained for a
tems, the response of the network to high-frequency fields lik® 1.V of EM-induced voltage, solving the channel current with
UMTS and GSM signals have been investigated, comparing the = 2048 realizations; this means that the effect of the EM

results with a continuous wave (CW) signal. field on mean open probability is extremely significant when
considering a superimposed voltage of /20. Decreasing the
B. EM Coupling intensity of EM-induced voltage, a reduction of significance

When dealing with a cell exposed to an EM field, in good aF;_down to no significance) can be observed. Probably an increase

proximation, the electric field value present on the membrar% thg_rt_eahzaﬂons numbe’k'f could drive to more performing .
can be related to the transmembrane voltage, as shown in [ r_13|t|y|ty, but strongly raises the computational effort. This
Following this assumption, the cell has been considered alelgetis out of the scope of this paper.

sphere of radiug? of 40 um covered by a membrane of very .

small thickness and with a capacitan@g, = 0.1 F/m?, im- C- EM Signals

plying that the frequencies of interest for this study, i.e., the MW Apollonio et al. described the GSM standard and related

range, are above th&relaxation frequency for the cell. signal used in their simulations in [2]. Here, an example is
At these frequencies, the membrane potential can be calceported in Fig. 5(a).
lated approximately as follows: Focusing attention on the UMTS standard, as reported in [17],
the uplink (link from the mobile to base station) physical radio
Vi () = L.5E; cos(#) @) channel can be represented as follows. The uplink direction uses
1 1 in-phase—quadrature (I-Q)/code multiplexing for user data and
wCp, oo + 20, physical layer control information. The physical layer control

information is carried by the dedicated physical control channel
whereo. anda, are, respectively, the conductivity of the Cyto(DPCCH). The higher layer information (user data) is carried

plasm, equal to 1 S/m, and the conductivity of the extracelluldP @€ or more dedicated physical channel (DPDCH).
fluid of 2 S/m [2], [16]. In this paper, only the DPDCH has been considered with a

As stated previously, ionic channels coefficients and cha_\racterization b_as_ed on two parameters: the_ frequency allo-
i (i = m,h) depend on the transmembrane voltage, whi&?“on ar_ld transmitting power. In particular, during each sI(_)t, a
can be considered as the sum of two contributions: the firdgnal with a central frequency of 1940 MHz and a bandwidth
related to the physiological membrane values and the sec&iP MHz (distance between different carriers) is simulated in
related to a perturbing component due to the EM field actirFHder to take into acgount alsmgle transmitting phanngl; inside
on the cell [16]. Therefore, the EM field can be thought gfach slot, the power is c0n3|de'red coqstant, Whl|e' moving from
as a perturbation of the equilibrium state that modifies ionf€ Slot to another the power is considered varying in a range
currents. In this context, ionic channels, as the elementg,/~1 dB of the maximum transmitting power, in order to take
biological units, state the sensitivity of the model to the externt© account the mechanism of power control. _
perturbation. In order to establish which value of the membrane' "€  resulting  simulated signal is characterized by
potential due to the EM field can be considered significant, Rseudonoise behavior, as evidenced in Fig. 5(b).
statistical methodology has been considered. The T-Student
test: commonly used to test whether the mean (or median) of ll. RESULTS

a physical variable differs between two population groups, hasthe proposed model is composed of different levels of the
been applied to the mean open probability of ionic channelsjp|ogical scale of complexity. As each level has its proper

1GraphPad Software Inc., San Diego, CA. © 1992-1998. [Online]. Availabl@UtPULS, results for the single channels, isolated neuron, and
http:/Avww.graphpad.com three interconnected neurons will be reported. The exposure
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TABLE Il
STATISTICAL PARAMETERS FOR THEISOLATED NEURON. MEAN VALUE, STANDARD DEVIATION, AND EFFECT OF EXPOSURE
(DISPLACEMENT FROM THE UNEXPOSEDSITUATION) FOR ISI AND Vi

IS1 \Z
Mean |Stand. | % effect | % effect Mean |Stand. | % effect | % effect
Dev. on mean |on stand. dev Dev. on mean |on stand. dev
Unexposed|439.2 |11.47 |- - -49.06 |1.5 - -
SIN900  [439.5 [11.15 [0.07 -2.7 -49.41 1.7 0.7 13
GSM  |4382 |11.28 |[-0.2 - 1.6 -48.86 | 1.4 -04 -6
UMTS  |439.7 |10.79 0.1 -6 -49.18 | 1.6 0.2 6
TABLE IV

STATISTICAL PARAMETERS FOR THE THREE CONNECTED NEURONS MEAN VALUE, STANDARD DEVIATION, AND EFFECT OF EXPOSURE
(DISPLACEMENT FROM THE UNEXPOSEDSITUATION) FOR ISI AND Vi

N , ‘ g .
Mean |Stand. | % effect | % effect Mean |Stand. | % effect | % effect
Dev. on mean |on stand. dev Dev. on mean |on stand. dev
Unexposed[389.2 1045 |- - -48.91 [0.58 - -
SIN900 386.6 [11.01 |-0.6 5.3 -48.8 |0.76 0.2 31
GSM 388.6 [10.66 |-0.15 5.6 -48.8 |0.53 0.2 -8.6
UMTS 387.9 19.86 -0.3 -5.6 -48.7 |0.55 0.4 -5.1
conditions considered in the following regarded: 1) a sinusoidal 14,

900-MHz signal (SIN900), which takes into account the first

generation of mobile communication signals (CW); 2) a GSM

waveform, representative of pulsed signals; and 3) an UMTS
signal for the last generation. In Table Il, an attempt to organize
the output variables observed for the single biological levels is
reported.

Results of 3-s exposure for the potassium, sodium, and cal-
cium channels have been observed for the exposed situation
versus the physiological one, as the percentage of the effect on |
the mean value of the ionic current flowing through the channel 4" i
itself. The effect obtained on the mean current value is very
slight, less than 1%, and the variation on the current flowing
in the channel due to the EM field is similar for both signals
(GSM and UMTS) [18]. 14 ———1—1—17—17

Regarding the isolated neuron and neuronal network, simula- A A
tions have been realized for a 40-s exposure giving rise to almost
100 spikes. Results have been organized as follows for exposed
and physiological situations:

« statistical analysis on the overall output (100 ISI);

—_
[}

—_
=

oo

IS| standard deviation
o0

IS] standard deviation

» statistical analysis on incremental groups of spikes (1-10, S Freots —e— Unexposed
1-20,..., 1-100). ] -e—oEm
The results of the statistical analysis on the group of 100 spikes S [“J'r'#*””
are reported in Tables 11l and 1V, respectively, for the isolated O (— 'I I
neuron and network. These tables summarize mean values and s
standard Qeviations for both the ISI and thrgshold voltege groups of spikes
the effectis expressed as a percentage of variation of the exposed b)

variable from the physiological one. Itis possible to observe that

the effect is quite below 1% for mean values of the IS| & Fig. 6. ISl standard deviation for groups of incremental number of spikes.
while it is around 6% (with a peak of 30%) for the standard dea) Isolated neuron. (b) Stochastic network (three neurons).

viation, indicating that the spreading of values around the mean

is affected by the exposure signal more than the simple meéan for the isolated neuron and neuronal network is reported in
To this regard a deeper analysis on standard deviation has bEign 6. First of all, it is possible to observe, both for the isolated
carried out, realizing an incremental statistics on spikes: finseuron and network, that by comparing the exposed situations
group from spike 1 to spike 10, second group from spike 1 teith the unexposed one, all the standard deviations, after an ini-
spike 20, and so on. Global results are reported in Figs. 6 aal difference, tend to the unexposed values. However, while the
7. A particular insight on the behavior of ISI standard deviasolated neuron standard deviation always increases, observing
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response is important, e.g., in sensory neuronal systems, the sto-
T T chastic properties of the channels may play a key role in high-
- - lighting possible effects.

REFERENCES

[1] M. H. Repacholi, “Low-level exposure to radiofrequency electromag-

R : netic fields: Health effects and research nee@sgelectromagnetics

[ [ — Une}{posed vol. 19, pp. 1-19, 1998.

-B— GSM [2] F. Apollonio, M. Liberti, G. D’Inzeo, and L. Tarricone, “Integrated
- = LTS models for the analysis of biological effects of EM fields used for

- % = GINEO0 mobile communications,TEEE Trans. Microwave Theory Techvol.

H 48, pp. 2082—-2094, Nov. 2000.

AN Y N AN B— [3] N.LaxminarayanaiarEquation of Membrane BiophysicsNew York:
34 5B . P84 Academic, 1984.

groups of spikes [4] P.Bernardi, G. D’Inzeo, and S. Pisa, “A generalized ionic model of the

(@) neuronal membrane electrical activityEE Trans. Biomed. Engvol.

41, pp. 125-133, Feb. 1994.

2 [5] , “Analysis of the interaction between microwave fields and snail

rr 111 J neurons by an ionic model of the membrane electrical activiyta

L SUUY VUL JUUUN [ Freq. vol. 4, pp. 341-347, 1989.

16 N —e— Unexposed [6] D. Colquhounand A. G. Hawkes, “Relaxation and fluctuations of mem-

' _ """ —-B— GSM brane currents that flow through drug-operated channelsPrae. R.

14 ] —— LMTS Soc. Lond. Bvol. 199, 1977, pp. 231-262. _

N .- = SINAO0 [7] ——, “On the stochastic properties of single ion channelsPiac. R.

1,2 feeeed e Soc. Lond. Bvol. 211, 1981, pp. 205-235.

S [8] ——, “The principles of the stochastic interpretation of ion-channel
mechanisms,” inSingle-Channels Recordinde. Neher and B. Sak-
mann, Eds. New York: Plenum, 1983, pp. 135-174.

[9] B. Hille, lonic Channels of Excitable MembranesSunderland, U.K.:
Sinauer Assoc., 1986.

[10] G.D’Inzeo, S. Pisa, and L. Tarricone, “lonic channels gating under EM
exposure: A stochastic modeBioelectrochem. Bioenergetol. 29, pp.
290-304, 1993.

[11] L. Tarricone, C. Cito, and G. D’Inzeo, “A Ch-receptor channels

(b) interaction with MW fields,”Bioelectrochem. Bioenerget:ol. 30, pp.
275-285, 1993.

[12] L. J. DeFelice and J. R. Clay, “Membrane current and membrane po-
tential from single-channel kinetics,” Bingle-Channels Recording.
Neher and B. Sakmann, Eds. New York: Plenum, 1983, pp. 323-342.

[13] H. Mino and W. M. Grill, Jr., “Effects of stochastic sodium channels

the neuronal network, it can be seen that the standard deviation ©on extracellular excitation of myelinated nerve fibertZEE Trans.

. S Biomed. Eng.vol. 49, pp. 527-532, June 2002.

tends to reach a constant value a_fter 60 spikes, indicating tha ?4] F. Buchholtz, N. Schinor, and F. W. Schneider, “Stochastic nonlinear

steady state has been reached. Fig. 7 refers to the behavVipr of dynamics: How many ion channels are in a single neuroh?Phys.

standard deviation; it is possible to observe an overall reductiop  €hem. Bvol. 106, no. 19, pp. 5086-5090, 2002. =
f the values from isolated to connected neurons (from arounH5] €. Polk and E. Postow, EdSGRC Handbook of Biological Effects of

0 Electromagnetic Fields Boca Raton, FL: CRC, 1986.

1.6 to 0.5). In summary, the standard deviation in the isolategi6] L.J. DeFelicentroduction to Membrane Noise New York: Plenum,

neuron is more sensitive to the kind of signal: it presents, with _ 1981. _

h d ref ite | | f GSHI” H. _Holma and_A. Tosk_ala, EdéNCDM_A for UMTS: Radl_o Access for

respect to the unexposed reference, quite lower values for Third Generation Mobile CommunicatiansNew York: Wiley, 2000.

and slight higher ones for UMTS and SIN900; such difference$i18] F. Apollonio, M. Liberti, and G. D'Inzeo, “Theoretical evaluation of

are not observed in the interconnected neurons. Examining in UMTS/GSM electrqmagnetic fields on neuronal network response,” in

more detail the behavior of the standard deviation for ISI and IEEE MTT-S Int. Microwave Symp. Digol. 3, 2002, pp. 1751-1754.

Vr, it is possible to notice that interconnected neurons present

a sort of synchronization that keep the values more similar in

spite of the different kind of exposure.

Vt standard deviation
_D
o

]

(=2}

[}
oS

[}

Vt standard deviation

Fig. 7. Vr standard deviation for groups of incremental number of spikes.
(a) Isolated neuron. (b) Stochastic network (three neurons).

Francesca Apollonio was born in Rome, ltaly,
in 1968. She received the Electronic Engineering
degree and Ph.D. degree from the University of
Rome “La Sapienza,” Rome, ltaly, in 1994 and
1998, respectively.

She began her research in the area of bioelec-
tromagnetics in 1994. In 1995, she was with the
Non-lonizing Radiation Laboratory, ENEA Re-
search Center, Rome, Italy, where she was involved

IV. CONCLUSIONS

The approach proposed in this paper has allowed a quant
tive evaluation of the effects at the neuronal network level ip®
duced by mobile systems, and can be a useful instrument
comparing different signal patterns and their impact on livin with experimental dosimetry techniques. In 2000,
systems. In general, it is possible to observe that moving from ___ she became a Researcher with the Department of

. : ic biological lev Iseems%ectronlc Engineering, University of Rome “La Sapienza.” She has been
f"‘ microscopic to a more macrosco_plc '9 ogical leve i Qolved in research concerning biological effects of EM fields, in particular,
imply a compensation of the EM fields’ induced effects. Thiser interests regard modeling the interaction mechanisms between EM fields
can lead to hypothesize a sort of “capability,” proper of biologgﬂgogﬁggﬁ'egyji%? molecular simulations, dosimetry techniques, and
ical systems, to minimize the effects due to this kind of non-p,"apsionio was the recipient of a 1995 Fellowship presented by the ENEA
invasive perturbing action. However, in cases where tempoFRalsearch Center, Rome, ltaly.



APOLLONIO et al: THEORETICAL EVALUATION OF GSM/UMTS EM FIELDS ON NEURONAL NETWORK RESPONSE 3035

Micaela Liberti was born in Genova, Italy, in 1969.
the University of Rome “La Sapienza,” Rome, Italy,
neering from the University of Rome “La Sapienza,”
effects on enzyme kinetics in loaded liposomes.

Fellow with the Italian Inter University Center of

Electromagnetic Fields and Biosystems (ICEmB)
University of Rome “La Sapienza.” In 2002,

She received the Electronic Engineering degree fror
in 1995, and the Ph.D. degree in electronic engi
Rome, ltaly, in 2000. Her thesis concerned MW

From 2001 to 2002, she was a Post-Doctora

Guglielmo D’Inzeo (M'83) was born in Milan, Italy,
in 1952. He received the Electronic Engineer degree
from the University of Rome, Rome, Italy, in 1975.
From the 1979 to 1985, he was Professore Incar-
icato with the University of Calabria (1979-1981)
and with the University of Ancona (1980-1985).
From 1986 to 1990, he was an Associate Professor
of MWs measurements with the University of
Rome, “La Sapienza,” Rome, ltaly. He is currently
a Full Professor of Bioelectromagnetic Interaction
with the University of Rome, “La Sapienza.” Since

she became a Researcher with the Department of Electronic Engineerit@97, he has been Chairman of the Electronic Engineering Department,
University of Rome “La Sapienza.” Her scientific interests concern interactidiniversity of Rome, “La Sapienza.” Since 1999, he has been the Director
mechanisms between EM fields and biological systems, dosimetric evaluatainthe Inter-University Centre for Electromagnetic Fields and Biosystems

at microscopic levels, exposure system dosimetry, and design.

(ICEmB), University of Rome, “La Sapienza.” He has authored or coauthored

Dr. Liberti was the recipient of a 1996-1998 Fellowship presented by tlower 40 papers on international refereed journals and books. His research
Scientific Research Ministry for a National Research Program on Telemediciaetivities have concerned active and passive MWs component design and

bioelectromagnetics. In MWs circuit design, he has focused his activities on
planar circuit characterization using numerical techniques and on the design of
monolithic amplifier circuits using new topologies. In the bioelectromagnetics
area, his fields of interest are the interaction of EM fields with biological
tissues, the effects of MWs and ELF fields on biological samples, and the
modeling of the interaction mechanisms.

Prof. D’Inzeo served as secretary treasurer of the Middle and South Sec-
tions of the IEEE Microwave Theory and Techniques Society (IEEE MTT-S)
from 1986 to 1988. He became a council member of the European Bioelectro-
magnetics Association (EBEA) in 1989. He served the Association as president
from 1993 to 1998. From 1992 to 2000, he was the Italian representative of the
COST 244 and COST 244B projects on “Biomedical Effects of Electromagnetic
Fields” and was chairman of Working Group 3 (System Application and Engi-
neering). In 1993, he acted as chairman of the Second International Meeting
“Microwaves in Medicine” organized by the IEEE and Commission K (Elec-
tromagnetism in Biology and Medicine) of the International Scientific Radio
Union (URSI). Since 1998, he has been the scientific director of Elettra 2000.
Since 2001, he has been the national representative of the COST 281 project
“Potential Health Effects from Emerging Wireless Communication Systems.”



	MTT024
	Return to Contents


